Le Système PbF_2 -InF₃. Étude Comparative Des Systèmes PbF_2 -TF₃ (T = Al, Ti, V, Cr, Fe, Ga, In)

JEAN RAVEZ, MONIQUE DARRIET, RÉGNAULT VON DER MÜHLL ET PAUL HAGENMULLER

Service de Chimie Minérale Structurale de la Faculté des Sciences de Bordeaux associé au C.N.R.S., 351, cours de la Libération, 33-Talence, France

Received November 3, 1970

L'étude des systèmes PbF_2-TF_3 (T = Al, Ti, V, Cr, Fe, Ga, In) a permis de mettre en évidence un grand nombre de phases nouvelles: des phases ($Pb_{1-x}T_x$) $F_{2+x\alpha}$ (T = Al, Ti, V, Cr, Fe, Ga, In) qui dérivent de $PbF_2\beta$, des phases ($Pb_{1-x}T_x$) $F_{2+x\beta}$ (T = Ti, V, Cr, Fe, Ga) dont les réseaux correspondent à des distorsions orthorhombiques d'une maille de type fluorine, les phases $PbTF_5$ (T - Al, Ga) et $Pb_3(TF_6)_2$ (T = Ti, V, Cr, Fe, Ga) de mêmes structures que BaFeF₅ et Ba₃(FeF₆)₂, $PbAl_2F_8$, $Pb_9Al_2F_{24}$ et $Pb_5In_4F_{22}$. Les conditions géométriques d'existence des phases $PbTF_5$ et Pb_3 (TF_6)₂ ont été précisées en fonction des rapports des rayons des ions T^{3+} et Pb^{2+} .

Many new phases have been detected: cubic α -(Pb_{1-x}T_x)F_{2+x} (T = Al, Ti, V, Cr, Fe, Ga, In) phases which are derived from β -PbF₂; orthorhombic β -(Pb_{1-x}T_x)F_{2+x} (T = Ti, V, Cr, Fe, Ga) phases related to the fluorite type; and PbTF₅ (T = Al, Ga) and Pb₃(TF₆)₂ (T = Ti, V, Cr, Fe, Ga) phases which are isostructural with BaFeF₅ and Ba₃(FeF₆)₃. The $r_{T3+}/r_{Pb^{2+}}$ ratio accounts for the existence of both latter phases.

L'étude radiocristallographique des systèmes PbF_2-TF_3 (T = Al, Ti, V, Cr, Fe, Ga) avait permis la mise en évidence d'un grand nombre de phases nouvelles (1-6). Nous nous sommes proposés d'étendre ce travail au cas de l'indium.

I. Le Système PbF₂-InF₃

Les réactions de préparation sont effectuées en tubes scellés d'or à 500°C. Les produits obtenus ont été soumis à des recuits de 48 heures à des températures comprises entre 400 et 650°C suivis de trempes.

L'étude radiocristallographique du système PbF₂--InF₃ a permis de mettre en évidence deux phases nouvelles: une phase α dérivant de PbF₂ β dont les limites correspondent à 500°C à $0 \leq InF_3/PbF_2 \leq$ 0.36 et une phase de formule Pb₅In₄F₂₂.

A. La Phase α

L'action de faibles quantités de InF_3 sur $PbF_2\beta$ n'en modifie pas la structure. Le paramètre de la phase cubique varie linéairement avec la composition jusqu'à la valeur limite $a = 5.804 \pm 0.005$ Å obtenue à 500°C pour $InF_3/PbF_2 = 0.36 \pm 0.03$. Au-delà de cette valeur α coexiste avec $Pb_5In_4F_{22}$ (Fig. 1).

FIG. 1. Evolution du paramètre a de la phase α en fonction du rapport InF₃/PbF₂.

TA	BL	ÆΑ	U	Ι

Pb₅In₄F ₂₂				
d(Å)	I/I _o			
5.64	3			
5.24	3			
4.75	2			
4.01	5			
3.74	13			
3.437	100			
3.383	60			
3.320	8			
3.224	10			
3.179	8			
3.157	45			
2.980	9			
2.962	10			
2.882	20			
2.850	17			
2.687	10			
2.127	19			
2.118	20			
2.048	16			
1.874	17			
1.740	10			
1.721	12			
1.694	9			

L'ion trivalent se substitue à l'ion divalent, le fluor se plaçant dans les lacunes de la maille fluorine:

$$Pb^{2+} + \Box \rightarrow In^{3+} + F^{-}$$

La phase α correspond donc à la formule structurale (Pb_{1-x}In_x)F_{2+x} ($0 \le x \le 0.26$) à 500°C.

B. La Phase $Pb_5In_4F_{22}$

Aucune isotypie n'a été relevée pour cette nouvelle phase; son spectre Debye-Scherrer est donné au Tableau I.

II. Les Systèmes PbF_2 -TF₃ (T = Al, Ti, V, Cr, Fe, Ga, In)

L'étude radiocristallographique des systèmes PbF_2-TF_3 (T = Al, Ti, V, Cr, Fe, Ga, In) a donc permis d'isoler et de caractériser un grand nombre de phases nouvelles:

(1) Des phases de formule $(Pb_{1-x}T_x)F_{2+x} \alpha$ (T = Al, Ti, V, Cr, Fe, Ga, In) de symétrie cubique, dont la structure dérive de celle de la fluorine. Ces phases possèdent un domaine d'existence d'autant plus étendu que le rayon du cation T³⁺ est plus grand, c'est-à-dire plus proche de celui de Pb²⁺. La Figure 2

FIG. 2. Variation de la limite supérieure du domaine d'existence des phases α en fonction du rayon de l'ion T³⁺.

donne la variation de la limite supérieure du dcmaine d'existence à 500°C en fonction du rayon de l'ion T^{3+} . Les valeurs des rayons ioniques sont celles proposées par Ahrens (7) pour la coordinence 6.

(2) Des phases de formule $(Pb_{1-x}T_x)F_{2+x}\beta$ (T = Ti, V, Cr, Fe, Ga) de symétrie orthorhombique dont les structures dérivent de celle de la fluorine.

Lorsque le rayon du cation T^{3+} est inférieur ou égal à 0.63 Å (c'est le cas de Ga³⁺ et de Cr³⁺) x prend une valeur proche de 0.20 et la maille orthorhombique correspond à la distorsion d'unemaille fluorine double.

Lorsque $r_{\rm T}^{3+} \ge 0.64$ Å (c'est le cas des ions Fe³⁺, V³⁺, et Ti³⁺) x est compris entre 0.25 et 0.27 et la maille orthorhombique correspond à la distorsion d'un maille florine simple. Le Tableau II donne les valeurs des volumes des mailles des phases (Pb_{1-x}T_x)F_{2+x} β .

L'absence de phase de ce type dans le cas de Al^{3+} peut s'expliquer par la différence importante de rayon ionique entre Al^{3+} et Pb^{2+} . Dans le cas de l'indium en revanche, pour des valeurs de x comparables à celles des phases $(Pb_{1-x}T_x)F_{2+x}\beta$, la substitution cationique peut se faire au sein même du réseau cubique de PbF_2 sans entraîner de distorsion orthorhombique par suite de la proximité des rayons des ions Pb^{2+} et de In^{3+} .

Le remplacement du plomb par un ion T^{3+} au sein du réseau fluorine des phases $(Pb_{1-x}T_x)F_{2+x}\beta$

TABLEAU II

$Pb_{1-x}T_xF_{2+x}\beta$	Ga	Cr	Fe	v	Ti
$r_{\rm T}^{3+}({\rm \AA})$	0.62	0.63	0.64	0.74	0.76
V (A-)	390.0	399.7	190.7	192.4	194.2

modifie donc d'autant plus la structure que la taille de l'ion T^{3+} est plus éloignée de celle de Pb^{2+} . L'aluminium est trop petit pour qu'une phase β puisse se former.

Les phases β se décomposent avant fusion en donnant la phase α et une phase Pb₃(TF₆)₂.

(3) Des phases de formules $PbAl_2F_8$, $Pb_9Al_2F_{24}$ et $Pb_5In_4F_{22}$ dont nous n'avons pas encore déterminé la structure.

(4) Des phases de formule PbTF₅ ou Pb₃(TF₆)₂.

(a) Les phases PbTF₅ (T = Al, Ga) possèdent la symétrie quadratique et sont isotypes de BaFeF₅; le groupe spatial est *I*4, C_4^5 . Les paramètres des deux mailles cristallines sont les suivants:

PbAlF₅ $a = 14.25 \pm 0.02$ Å, $c = 7.230 \pm 0.006$ Å, PbGaF₅ $a = 14.489 \pm 0.006$ Å, $c = 7.324 \pm 0.002$ Å.

(b) Les phases $Pb_3(TF_6)_2$ (T = Ti, V, Cr, Fe, Ga) cristallisent dans le système quadratique et sont isotypes de $Ba_3(FeF_6)_2$.¹ Le groupe spatial est *I*4, C_4^5 ; *I*4, S_4^2 ou *I*4/*m*, C_{4h}^5 ; les paramètres des diverses mailles cristallines sont les suivants:

 $\begin{aligned} & \text{Pb}_{3}(\text{GaF}_{6})_{2} \\ & a = 14.349 \pm 0.006 \text{ Å}, \quad c = 7.443 \pm 0.003 \text{ Å}, \\ & \text{Pb}_{3}(\text{CrF}_{6})_{2} \\ & a = 14.424 \pm 0.008 \text{ Å}, \quad c = 7.417 \pm 0.006 \text{ Å}, \\ & \text{Pb}_{3}(\text{FeF}_{6})_{2} \\ & a = 14.449 \pm 0.008 \text{ Å}, \quad c = 7.441 \pm 0.005 \text{ Å}, \\ & \text{Pb}_{3}(\text{VF}_{6})_{2} \\ & a = 14.510 \pm 0.005 \text{ Å}, \quad c = 7.444 \pm 0.004 \text{ Å}, \\ & \text{Pb}_{3}(\text{TiF}_{6})_{2} \\ & a = 14.576 \pm 0.008 \text{ Å}, \quad c = 7.424 \pm 0.006 \text{ Å}. \end{aligned}$

Contrairement au cas des phases de type PbTF₅ où *a* et *c* augmentent avec le rayon ionique de T³⁺, seul le paramètre a croît ici avec la taille de T³⁺, *c* restant pratiquement constant. La structure de PbTF₅ comporte un nombre égal de chaînes simples et ramifiées d'octaèdres (TF₆) parallèles à l'axe Oz (8). Bien que la structure de Pb₃ (TF₆)₂ ne soit pas encore déterminée, nous pouvons avancer l'hypothèse suivante: les chaînes de l'un des deux types disparaîtraient, elles seraient remplacées par des files d'ions Pb²⁺, d'où une moindre influence de la taille de T³⁺ sur le paramètre *c*. Le passage de la maille élémentaire de PbTF₅ (Pb₁₆T₁₆F₈₀) à celle de Pb₃(TF₆)₂ (Pb₁₈T₁₂F₇₂) semble devoir justifier

TABLEAU III	Ga Cr Fe V Ti In	$Pb_{1-x}Ga_xF_{2+x}\alpha Pb_{1-x}Ct_xF_{2+x}\alpha Pb_{1-x}Fe_xF_{2+x}\alpha Pb_{1-x}V_xF_{2+x}\alpha Pb_{1-x}Ti_xF_{2+x}\alpha Pb_{1-x}Ti_xF_{2+x}\alpha$	$Pb_{1-x}Ga_xF_{2+x}\beta Pb_{1-x}Cr_xF_{2+x}\beta Pb_{1-x}Fe_xF_{2+x}\beta Pb_{1-x}V_xF_{2+x}\beta Pb_{1-x}Ti_xF_{2+x}\beta$	PbGaFs	$Pb_{3}(GaF_{6})_{2} \qquad Pb_{3}(CrF_{6})_{2} \qquad Pb_{3}(FeF_{6})_{2} \qquad Pb_{3}(VF_{6})_{2} \qquad Pb_{3}(TiF_{6})_{2}$	PbsIn4F22
	Ga	$Pb_{1-x}Ga_xF_{2+x}\alpha Pb_{1-x}Cr_x$	$Pb_{1-x}Ga_xF_{2+x}\beta$ $Pb_{1-x}Cr_x$	PbGaF ₅	Pb ₃ (GaF ₆) ₂ Pb ₃ (CrF ₁	
	Υ	$Pb_{1-x}Al_xF_{2+x}\alpha$		PbAlF _s		PbAl2F8 Pb9Al2F24
	v *	$Pb_{1-x}T_xF_{2+x}\alpha$	$Pb_{1-x}T_xF_{2+x}\beta$	PbTFs	Pb ₃ (TF ₆)2	Autres phases

¹ Dans un mémoire antérieur nous annoncions une phase de formule PbVF₅ au lieu de Pb₃(VF₆)₂. Cette erreur était due au fait que VF₃ de départ utilisé était un produit commercial souillé d'oxygène (3).

cette hypothèse: diminution du nombre des ions T^{3+} et augmentation de celui des ions Pb^{2+} .

Cette étude comparative nous a permis de préciser les conditions d'existence des phases PbTF₅ et Pb(TF₆)₂ en fonction du rapport des rayons des ions T³⁺ et Pb²⁺: la composition PbTF₅ n'existe que pour $r_T^{3+}/r_{Pb}^{2+} \le 0.52$, la composition Pb₃ (TF₆)₂ pour $0.52 \le r_T^{3+}/r_{Pb}^{2+} \le 0.64$. Un résultat analogue avait déjà été observé lors de l'étude des systèmes MF₂-TF₃ (M = Ca, Sr, Ba) (T = Al, Ti, V, Cr, Fe, Ga, In): lorsque le rapport r_T^{3+}/r_{Pb}^{2+} est faible, c'est la phase MTF₅ qui se forme plutôt que M₃(TF₆)₂ (9-16).

Le tableau III donne l'ensemble des phases obtenues au sein des systèmes PbF_2-TF_3 .

Bibliographie

- 1. J. RAVEZ ET D. DUMORA, C.R.H. Acad. Sci. 269, 331 (1969).
- 2. J. RAVEZ ET M. VASSILIADIS, C.R.H. Acad. Sci. 270, 219 (1970).

- 3. J. RAVEZ ET D. DUMORA, C.R.H. Acad. Sci. 269, 235 (1969).
- 4. A. DE KOZAK, C.R.H. Acad. Sci. 268, 2186 (1969).
- 5. J. RAVEZ ET M. DUALE, C.R.H. Acad. Sci. 279, 56 (1970).
- 6. J. GRANNEC ET J. RAVEZ, Bull. Soc. Chim. Fr. 5, 1753 (1970).
- 7. L. H. AHRENS, Geochim. Cosmochim. Acta 2, 155 (1952).
- R. VON DER MÜHLL, J. GALY, ET S. ANDERSSON, C.R.H. Acad. Sci. 267, 569 (1968).
- 9. J. RAVEZ ET P. HAGENMULLER, Bull. Soc. Chim. Fr. 7, 2545 (1967).
- 10. J. RAVEZ, Bull. Soc. Chim. Fr. 5, 1583 (1969).
- 11. J. RAVEZ, M. VASSILIADIS ET P. HAGENMULLER, C.R.H. Acad. Sci. 268, 1876 (1969).
- 12. J. C. CRETENET, C.R.H. Acad. Sci. 268, 945 (1969).
- 13. D. DUMORA ET J. RAVEZ, C.R.H. Acad. Sci. 268, 1246 (1969).
- 14. J. RAVEZ, J. VIOLLET, R. DE PAPE, ET P. HAGENMULLER, Bull. Soc. Chim. Fr. 4, 1325 (1967).
- 15. J. RAVEZ, J. GRANNEC, J. PORTIER, ET P. HAGENMULLER, Bull. Soc. Chim. Fr. 1, 64 (1970).
- 16. J. GRANNEC ET J. RAVEZ, C.R.H. Acad. Sci. 270, 2059 (1970).